

Large Scale Battery Storage System Today's & future usage in power grids

Workshop: Operation of Thermal Power Plant: A bridge to decarbonized energy system

12.10.2023

- 🕥 🛛 Raipur India | Essen Germany (Remote)
- Christian Kurfiß | RWE TI TOE-SE

Purpose of this presentation

- Today's power grids and the challenges + opportunities we face as part of the **energy transition**, especially in respect to design and operation
- How storage can help to increase flexibility in the power grids, especially when facing fundamental changes in power generation (thermal + renewable)
- Providing insights in how renewable energy sources in conjunction with energy storage have been deployed in power systems already

Agenda

- 1 Introduction Team RWE - Storage Engineering
- 2 Today's power grids and their needs amidst current energy transition (power system stability)
- Energy Storage Systems for today's & 10 min.
 future power grids (power applications)
- **4** RWE Battery Power Plants

5 min.

5 min.

10 min.

Team RWE Storage Engineering

RWE 11/10/2023 Large Scale Battery Storage System - Today's & future usage in power grids

RWE Storage Engineering Who we are

Team		~60 EMPLOYEES	~13 NATIONALITIES	9 YEARS
	22	employees distributed globally (US, EU, APAC)	diverse and dynamic	track record of delivering energy storage projects
Project development, construction & technology		~1,325 MWh energy storage project in execution worldwide	660 MWh DC largest project currently in execution	17 stationery and EV batteries integrated
Outlook and ambition		15,000 MWh	15	TOP 5
		RWE storage pipeline	countries in which we will operate projects	ambition to be within first 5 storage players

Power grids amidst today's energy transition

Today's Power Grid

- Typical concept of generation, transmission and distribution of electric energy
- Transmission system build around centralized power plants, close to industry
- Decentralized renewable energy source (wind, solar, bio-mass) deployed
- **Complexity** of the over all power system is **increasing**:
 - Bi-directional power flow
 - Quantity of intermittent power generation units rapidly increase (add. power nodes)
 - New assets with different dynamic behaviors that contribute to the change the overall power system dynamic

*in exceptional cases

Today's Power Grid

- Today's power systems consist of thousands of power nodes, bus-bars, generation assets, transformers, consumers with different characteristics
- Each deployment of new renewable energy sources or removal of conventional power plants is posing a change to the overall power system
- All changes in the system need to be assessed in advance in order to examine the potential impact on the power system - Load flow analysis, protection studies, transient Analysis, etc.
- Flexibility within the power grid becomes essential

Source: Composite power system reliability evaluation using modified minimal cut set approach, T. Bharath Kumar | https://www.sciencedirect.com/science/article/pii/S1110016817302934#f0020

Today's Power Grids Grid frequency – UK 2016

*Source: Frequency Data – National Grid UK, Report: Master Thesis – Deployment of large-scale energy storage systems in power grid for ancillary services, 2018-06-11, Christian Kurfiß | University of Queensland –St. Lucia, Australia

Energy Storage Systems for today's & future power grids

RWE 11/10/2023 Large Scale Battery Storage System - Today's & future usage in power grids

Market Size Battery Energy Storage

- Transition to green energy with its new power applications is demanding more energy storage solutions, thus pushing the market for battery storage
- New production lines and subsequently 'economy of scale' effects are reducing costs for battery cells/modules
- Cost-advantages on technology side + increasing need for system services (ancillary market) result in a positive business case for 'large-scale-energy storage systems'
- Currently in a 'bullish' market environment with high growth rates

+220% in 5 years

Forecast battery energy storage market value worldwide (in billion U.S. dollars)

Market Size Battery Energy Storage

Region	2020	2030	2040
World	21 GW	106 GW	220 GW
India	5 GW	27 GW	61 GW

IEA

"Battery Storage is (almost) ready to play the flexibility game", iea.org, 7th Feb. 2019, Mrs. Claudia Pavarini

Installed capacity of utility-scale battery storage systems in the New Policies Open 2 Scenario, 2020-2040

Battery Energy Storage System

Main components

Energy Storage

- Large-Scale energy storage system can serve as short-term storage to make large amounts of renewable energy quickly accessible to the power grid
- Equalizes supply & demand

Power Converter

- Limiting the need for grid expansions as battery storage can reduce 'congestions' in the transmission lines
- PCS in 'grid forming' mode can dynamically stabilize and control power grids in the future

Battery Energy Storage System

Factors for success

Hybrid Power Plants Solar & Storage

- Multiple Power Conversion Systems (Converter) for each power asset
- Connected to common bus on AC-side

DC-Coupled

- Centralized power conversion system
- Connected to common bus on DC-side

Today's Power Grid System Dynamics

- - Conventional power system are based on alternators (rotating masses)
 - These rotating masses inherently have inertia, the 'degree of continuation in its current motion'
 - The sum of all rotating masses in a power system form the overall system inertia which is damping rapid changes in power supply/consumption
 - Diminishing number of rotating masses posing a risk of grid instability – countermeasures are essential to increase renewable share while maintaining power system stability
 - Battery systems + renewable energy sources based on power conversion systems are able to provide 'synthetic inertia' – new controls!

Power System Stability

Conventional Power Plants

- Rapid changes in load will cause frequency fluctuations as an overall system response
- Level of inertia + level of instant load jump impacts the degree of frequency excursions

Power Conversion System Modes of operation

Current Controlled

- Inverter is acting as a 'current source' and requires voltage to be provided by other sources such as an alternators
- Shifting phase angle allows provision of active power P and reactive power Q at full range. Power factor 0-1, ind. & cap.
- Grid Support controls implemented (FRT, P(f), Q(V), etc.

Voltage Controlled

- Inverter acting as a 'voltage source' and provides both, voltage + current (grid forming).
- System behavior and system response fundamentally different to alternators such as synchronous machines. Frequency & voltage can be controlled easier and faster
- Grid Support controls implemented (Inertia, f(P), etc.)

Power System Stability Key component

- In contrast to alternators, semi-conductor based power conversion system can 'define' the grid-frequency independently
- In grid-forming mode (isochronous), an inverter can cope with instant load jumps of >100% without notable changes in grid frequency
- This behavior can be defined via software controls and algorithms tailored to the needs of the individual power system
- PCS units + Software are the key components for grid stability and enable the operator to make use of the full range of available renewable sources

Location: Germany

Size: 15 MW | 15 MWh

Owner & Operator: eins energie in Sachsen GmbH

A CONTRACTOR OF THE ACTION

Location: Germany

Size: 15 MW | 15 MWh In operation: Q4 - 201<u>8</u>

Owner & Operator: eins energie in Sachsen GmbH

A DE TRANSPORTER AND A DE T

Location: Germany Size: 45 MW | 49 MWh In operation: Q3 - 2022

25VD

container

IMA

SUNNY CENTRAL STORAGE UP

Location: Germany

ontainer

UNISSI - LITHUM BATTEL INSTALLED IN CARGO TRANSPORT UNIT

Size: 45 MW | 49 MWh

25VD

Att

In operation: Q3 - 2022

RWE

Location: Ireland Size: 60 MW | 34 MWh In operation: Q3 - 2022 42 Laboran

RWE

Size: 37 MW | 37 MWh In operation: Q3 - 2023

Location: USA, TX

Location: USA, CA

Size: 137 MW | 486 MWh

La series

IR

In operation: Q2 - 2023

the state of the second second

RWE

Location: USA, TX

Size: 100 MW | 200 MWh

In operation: In construction

Thank you for your attention

